If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2+8r-48=0
a = 3; b = 8; c = -48;
Δ = b2-4ac
Δ = 82-4·3·(-48)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{10}}{2*3}=\frac{-8-8\sqrt{10}}{6} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{10}}{2*3}=\frac{-8+8\sqrt{10}}{6} $
| 2(u-85)=24 | | -4=6x-4+6x | | 3c+2=-10,c= | | 2(x-5)=12x+6 | | s=1/10=3/2 | | 7(w-84)=42 | | 8g-5g=13 | | 120-15x+5=22x+4 | | 120x+20=200 | | 8=u/2-2 | | d+17/3=10 | | 4x/5=3/8 | | 14=4b-6b | | 7x−3x+4=4 | | 1-5a+4=5 | | -6=14-8x | | 7x−3x−4=4 | | -2u+13.9=1.1 | | -11.2=2x=8.8 | | x*x=15-2x | | 7x-1=2x=+3 | | 4.8x+1.2=3,6 | | 3x-6=3(-x+4) | | -3(-7x+4)-8x=3(x-8)-3 | | 287+r=971 | | f/5-5=3 | | -3(7+2x)+4x=5 | | 10x+16=34 | | 8u-2=2u | | 7-5r=57 | | 2(x-1)=3x-(x+4) | | 10x+18=34 |